AWI-Gen
Wits-INDEPTH Partnership
Genomic and environmental risk factors for cardiometabolic disease in Africans
Collaborative Centre

Members at this meeting:
Marianne Alberts
Nadia Carstens
Nigel Crowther
Zane Lombard
Michele Ramsay
Himla Soodyall
Ernest Tambo
Alisha Wade
Ananyo Choudhury
Daniel Achinko

Co-PI
Osman Sankoh
INDEPTH - International Network for the Demographic Evaluation of Populations and their Health in low and middle-income Countries

H3Africa NIH funded project
Top 5 leading **risk factors** for burden of disease (DALYs) in South Africa

- High BMI as a risk factor
 - Ghana 7th
 - Kenya 14th
 - Burkina Faso not in top 15

H3Africa – Johannesburg - October 2013
Genomic and environmental contributions to complex traits in African populations

• High genetic diversity and low LD
• Population structure
• Inter-ethnic variation
 – Global risk variants
 – Population specific risk variants
• Environments and diets
• Few studies in African populations
 – African Americans reflect predominantly west African ancestry
AWI-Gen Collaborative Center

• Wits-INDEPTH Partnership
• Project Aims
• Phenotyping & sample collection
• Data Management
• Important outcomes
• Time line
AWI-Gen overview

AWI-Gen
(African Wits-INDEPTH Partnership for the Genomic study of body composition and cardiometabolic disease risk)
The INDEPTH Network of Health and Demographic Surveillance Systems

Founded 1998, constituted 2002

Osman Sankoh
Executive Director of INDEPTH

Informing global efforts to improve the health and wellbeing of low and middle-income populations

Stephen Tollman
Principal Scientist

Kathleen Kahn
Board Member

H3Africa – Johannesburg - October 2013
Low- and Middle-Income Countries with INDEPTH member centres
Running Health and Demographic Surveillance Systems (HDSSs)

Currently 43 HDSSs in 20 countries
30 HDSSs in Africa
12 HDSSs in Asia
1 HDSS in Oceania

Over 3,200,000 people under surveillance
AWI-Gen study sites in Africa:

- Ghana, Navrongo (Rural)
 Abraham Oduro

- Burkina Faso, Nanoro (Rural)
 Halidou Tinto

- Kenya, Nairobi (Urban)
 Catherine Kyobutungi

- South Africa, Soweto (Urban)
 Shane Norris

- South Africa, Agincourt (Rural)
 Stephen Tollman

- South Africa, Dikgale (Rural)
 Marianne Alberts
1. Pilot Project – Soweto (~2000 individuals)
2. Population structure and genome architecture
3. Genetic and environmental contributions to body composition across six Centres in Africa (~12 000 individuals)
Urban Soweto study

• Study design
 – Population sample
 – Age 40 to 60 yrs
 – Male & Female
 – Body composition phenotype

• Platform
 – Candidate gene/region assessment
 – Metabochip

• Analysis
 – Correlations with quantitative traits related to body composition

• Progress
 – ~1000 females
 – 40 to 60 years
 – Phenotyped
 – Genotyped

• Next steps
 – Prepare DNA from next 1000 individuals for genotyping
 – Data analysis
Advantages:
- Cost effective
- Fine mapping (previous associations)
- Replication study
- Rapid results
- Good training opportunity

Disadvantages:
- SNP choice predominantly Eurocentric
- Previous associations not in African populations
- Limits novel discovery
Role of pilot project in capacity development

• PhD student – Venesa Pillay
• Soon to join: PhD student and postdoctoral fellow
• Complexity of the data - genotyping and phenotype (including biochemical markers) lends itself to multiple enquiry
Aim 2: Population structure and genomic architecture

- **Study design**
 - 30 unrelated trios
 - 40 unrelated individuals

- **Genotyping Platform**
 - uncertain

- **Outcome**
 - HapMap equivalent for each population
 - Common variant allele frequencies

- **Challenge**
 - Which populations to test
Complexity of population structure

Africa
2,146 languages spoken (30.2% of all living languages)
789,138,977 people (12.7% of all people)

<table>
<thead>
<tr>
<th>Country</th>
<th>No. Living languages</th>
<th>Indigenous languages</th>
<th>Immigrant languages</th>
<th>Population size</th>
<th>Diversity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>70</td>
<td>68</td>
<td>2</td>
<td>10.9 M</td>
<td>0.768</td>
</tr>
<tr>
<td>Ghana</td>
<td>86</td>
<td>81</td>
<td>5</td>
<td>25.1M</td>
<td>0.835</td>
</tr>
<tr>
<td>Kenya</td>
<td>72</td>
<td>67</td>
<td>5</td>
<td>37.6M</td>
<td>0.928</td>
</tr>
<tr>
<td>South Africa</td>
<td>44</td>
<td>28</td>
<td>16</td>
<td>44.6M</td>
<td>0.874</td>
</tr>
</tbody>
</table>

Language divisions

<table>
<thead>
<tr>
<th>Language divisions</th>
<th>NUHDSS</th>
<th>Kenya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bantu</td>
<td>78.5</td>
<td>52.0</td>
</tr>
<tr>
<td>Nilotic</td>
<td>13.8</td>
<td>28.6</td>
</tr>
<tr>
<td>Cushites</td>
<td>6.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Other</td>
<td>1.3</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Ethnic Groups

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>% NUHDSS</th>
<th>% Kenya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kikuyu</td>
<td>29.9</td>
<td>17</td>
</tr>
<tr>
<td>Luhya</td>
<td>15.7</td>
<td>14</td>
</tr>
<tr>
<td>Kamba</td>
<td>24.6</td>
<td>10</td>
</tr>
<tr>
<td>Luo</td>
<td>12.9</td>
<td>10</td>
</tr>
<tr>
<td>Other</td>
<td>16.9</td>
<td>49</td>
</tr>
</tbody>
</table>

Catherine Kyobutungi: Nairobi Health and Demographic Surveillance System
Aim 3: Genetic and environmental contributions to body composition

- Standardised phenotype questionnaire
- Instructions & SOPs
- Equipment purchase
 - Stadiometers
 - Scales
 - Ultrasound machines
- Training

- Field roll out
 - Staggered to ensure QA
 - Years 2, 3 & 4
 - Phenotyping
 - Blood sampling
- Data (demography & phenotype)
 - Collection
 - Data Management
Phenotype & Sample collection

Funded
- Demographic information
 - Home language & self-reported ethnicity
 - Medical & health histories
 - Living conditions (SES)
- Body composition
 - Height & Weight
 - Blood pressure
 - Waist & hip circumference
 - Ultrasound subcutaneous & visceral fat

Not funded
- Glucose
- Lipids

Blood samples (fasting):
- EDTA (DNA)
- Clotted (serum - lipids)
- NaF (plasma - glucose)

Added sampling:
- Spot urine collections

H3Africa – Johannesburg - October 2013
RedCAP for AWI-Gen

<table>
<thead>
<tr>
<th>Demographic Collection Data (89)</th>
<th>Phenotypic Collection Data (231)</th>
<th>Sample Data Collection (25)</th>
<th>Blood Collection Data (21)</th>
<th>Checklist (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General information</td>
<td>Marital Status</td>
<td>Anthropometric measurements</td>
<td>Blood collection</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Demographic information</td>
<td>Education</td>
<td>Blood pressure</td>
<td>HIV</td>
<td>Anthropometric measurements</td>
</tr>
<tr>
<td>• Age</td>
<td>Employment</td>
<td>Pulse</td>
<td>Test results</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>• Country</td>
<td></td>
<td>Ultrasound measurements</td>
<td>Urine collection</td>
<td>Pulse</td>
</tr>
<tr>
<td>• Home language*</td>
<td></td>
<td></td>
<td></td>
<td>Blood Samples</td>
</tr>
<tr>
<td>• Ethnicity*</td>
<td></td>
<td></td>
<td></td>
<td>Ultrasound</td>
</tr>
<tr>
<td>• Family Ethnicity*</td>
<td></td>
<td></td>
<td></td>
<td>cIMT</td>
</tr>
<tr>
<td>Family Composition</td>
<td>Household attributes*</td>
<td></td>
<td></td>
<td>HIV test</td>
</tr>
<tr>
<td></td>
<td>Substance use</td>
<td></td>
<td></td>
<td>Urine sample</td>
</tr>
<tr>
<td></td>
<td>• Tobacco use</td>
<td></td>
<td></td>
<td>Travel reimbursement</td>
</tr>
<tr>
<td></td>
<td>• Alcohol use</td>
<td></td>
<td></td>
<td>Quality Controller ID</td>
</tr>
<tr>
<td></td>
<td>• Drug use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infection history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Malaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiometabolic risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyroid disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In a population sample of 2000 individuals.....

<table>
<thead>
<tr>
<th></th>
<th>Expected number HIV infected individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agincourt</td>
<td>462</td>
</tr>
<tr>
<td>Dikgale</td>
<td>274</td>
</tr>
<tr>
<td>Nairobi</td>
<td>248</td>
</tr>
<tr>
<td>Nanoro</td>
<td>22</td>
</tr>
<tr>
<td>Navrongo</td>
<td>30</td>
</tr>
<tr>
<td>Soweto</td>
<td>304</td>
</tr>
</tbody>
</table>

Based on regional averages

Based on country average
Data Management

MODULE 1
Repository
Demographic & Phenotype data

MODULE 2
LIMS
Biorepository & Laboratory

MODULE 3
Genetic & Genomic Data Results Management

MODULE 4
Shared data sets
Repository
collaborators & users

Unique Individual identifier

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6

Repository
Demographic & Phenotype data

LIMS
Biorepository & Laboratory

Shared data sets
Repository
collaborators & users

Genetic & Genomic Data Results Management
AWI-Gen Data Management Workshop
July 2013
Summary of Connectivity and Storage Capacity

<table>
<thead>
<tr>
<th>Site</th>
<th>Speed*</th>
<th>Reliability</th>
<th>Storage capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nairobi</td>
<td>8MBps</td>
<td>99%</td>
<td>1.4 TB</td>
</tr>
<tr>
<td>Nanoro</td>
<td>1MBps</td>
<td>Back up system</td>
<td>300 GB +</td>
</tr>
<tr>
<td>Navrongo</td>
<td>1MBps</td>
<td>98%</td>
<td>730 GB</td>
</tr>
<tr>
<td>Agincourt</td>
<td>4MBps</td>
<td>96%</td>
<td>5 TB</td>
</tr>
<tr>
<td>Dikgale</td>
<td>45MBps</td>
<td>95%</td>
<td>30 TB</td>
</tr>
<tr>
<td>Soweto</td>
<td>94MBps</td>
<td>99%</td>
<td>300 GB +</td>
</tr>
</tbody>
</table>
Important outcomes

• Capacity development
 – PhD students, postdocs, scientists
 – Epidemiology, population genetics, genomics, bioinformatics

• Phenotype and blood profiles
 – Means and ranges for African populations

• New knowledge
 – African population diversity
 • African variation enhanced chip (cost effective)
 • African population structure
 – Pilot study
 • Replication data, Longitudinal analysis, Training
 – Main study
Timeline (Aug 2012 – July 2017)

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
<th>YEAR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training and capacity development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African genome structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenotyping and sampling for Cohorts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity and body composition pilot study – urban South Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genome association study – west, east and south Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

• Wits
 Michele Ramsay
 Himla Soodyall
 Shane Norris
 Stephen Tollman
 Alisha Wade
 Nadia Carstens
 Nigel Crowther
 Zane Lombard
 Kathleen Khan
 Cassandra Soo
 Ananyo Choudhury
 Venesa Pillay

• INDEPTH
 Osman Sankoh
 Kathleen Kahn
 Stephen Tollman
 Abraham Oduro
 Godfred Agongo
 Halidou Tinto
 Hermann Sorgho
 Marianne Alberts
 Catherine Kyobutungi
 Kate Theron