

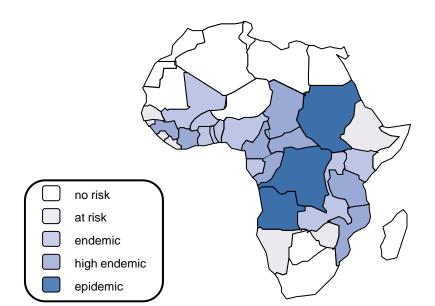
TrypanoGEN: An integrated approach to the identification of genetic determinants of susceptibility to trypanosomiasis

African Trypanosomiasis Associates with Tsetsefly Distribution

Animal African Trypanosomiasis (AAT)

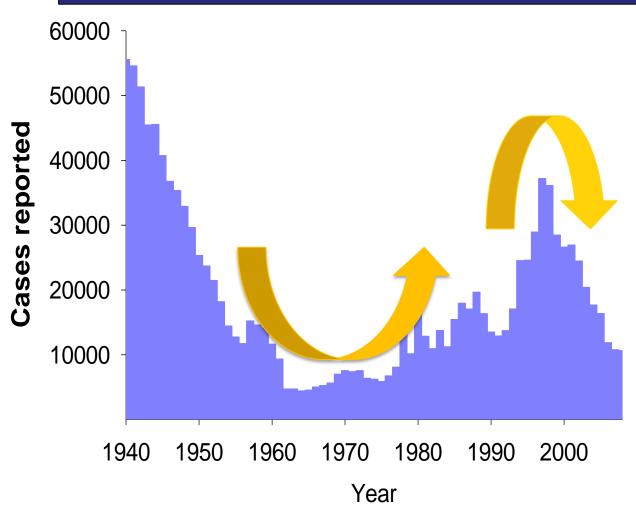
- ❖ T. Vivax
- T. Congolense
- T. brucei brucei

Human African Trypanosomiasis (HAT)


- T. brucei rhodesiense
- ❖ T. b. gambiense

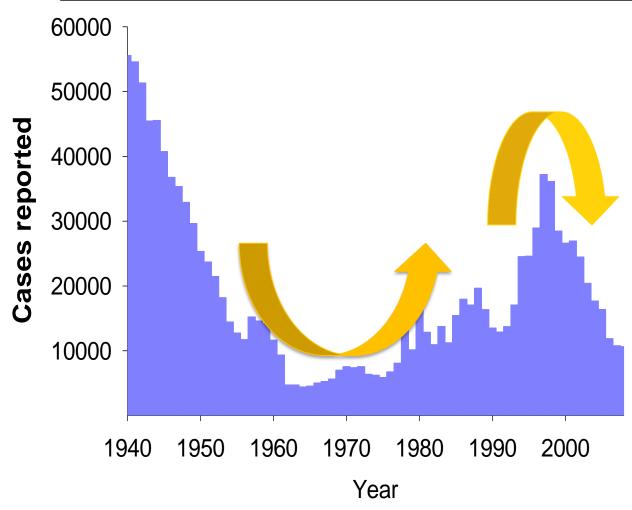
The problem

- HAT is a fatal neglected disease
- Estimated 70,000 human cases/year
- No vaccine
- Drugs are toxic
- Zoonotic livestock cases estimated cost \$1.3bn/year
- Major impact on human and animal health



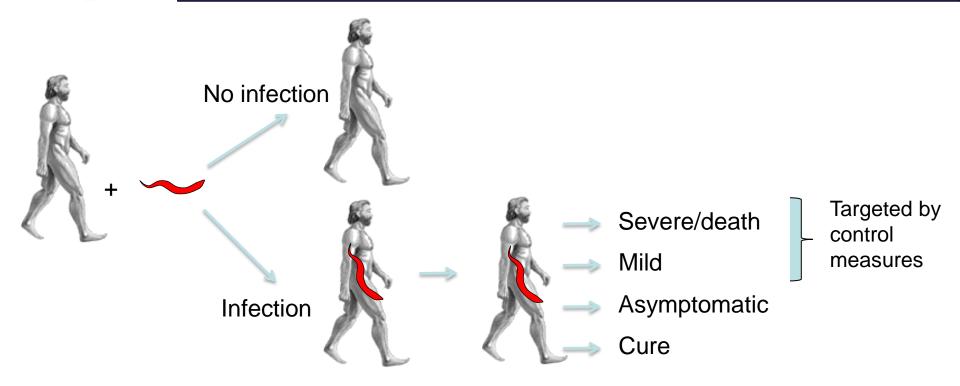
Reported incidence of disease

Estimated that 7-10 x more people are affected than reported


New tools are needed

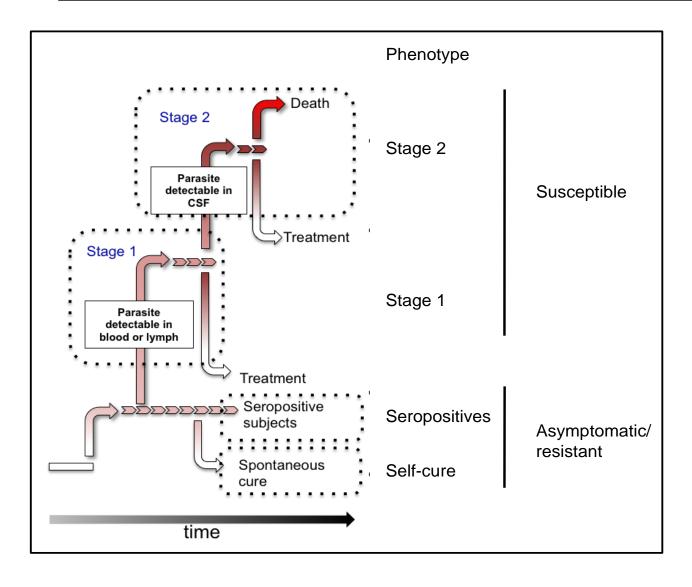
 Wide-spread consensus of the need for novel approaches to achieve elimination or sustainable control

- New control strategies
- New therapies


The threat of re-emergence

What are the factors that are responsible for re-emergence/maintenance of disease foci?

The diversity of infection outcomes



Parasite genetic diversity – virulence / pathogenicity

Human genetic diversity - resistance / susceptibility

The diversity of infection outcomes

The aim

Exploit human genetic diversity to find the key to combating the disease:

In developing new control strategies
In developing new therapies

Research Question and Objectives

What are the host genetic determinants of disease susceptibility/resistance?

Objectives

- To create an extensive biobank of both retrospective and prospective samples with standardised parasitological and clinical metadata
- To generate a database of human genetic variation from different African countries
 - In order to identify loci associated with HAT susceptibility

Hypotheses

HYPOTHESIS 1:

HAT per se is controlled by susceptibility/resistance loci and the GWAS that will be carried out in this project will reveal candidate loci for this phenotype.

HYPOTHESIS 2:

ASYMPTOMATIC PATIENTS CAN BE INCLUDED AS ENDEMIC CONTROLS TO INCREASE THE PROBABLITY OF IDENTIFYING RESISTANT/SUSCEPTIBILTY LOCI

The current situation for genetic association studies

- Current research is small-scale
- Asymptomatics are not taken into account
- Two published studies that lack power

Consequence

- Waste of resources
- Samples not logged properly and not available to others, often different sampling strategies
- Lack of provision of infrastructure, training and longterm legacy

Our proposal

 To create for the first time a network that systematically investigates genetic diversity in relation to HAT in endemic areas across the whole of Africa

Enhance capacity for African-led research into an African disease

Project overview

The TrypanoGEN Biobank

Existing samples

 Controls
 SERO
 HAT

 390
 165
 1060

Minimum required for GWAS

Controls	SERO	HAT	
600	400	1200	

Year 1	Year 2	Year 3	Year 4	Year 5
				i cai c

Activities

Biobanking existing samples Ethical agreement

WGS of 130 controls

Design custom
Omni2.5 Illumina

Genotyping 2800 individuals

GWAS

Candidate gene testing

Candidate gene testing

Training

Ethics Ethics

Sampling/biobanking N Sequence bioinfo

NGS bioinfo SNPs arrays Imputation meth. GWAS statistics

3rd Generation Seq Grantmanship

Our GWAS plan

- To collect biological samples and clinical data from patients and controls.
 - At least 1000 cases
 - At least 1400 controls
- To conduct a GWAS
 - Sequence 130 individuals to obtain local SNPs
 - Focus on four regions:
 Uganda, DRC, Cote d'Ivoire, Guinea
 - Genotype ~half the samples- discovery cohort
 - Genotype the rest for top 1% hits-validation cohort

Details of GWAS

Re-sequencing of African population N=130 from the 4 centres

Output: To inform SNP imputation

Genotyping

Discovery cohort

Stage 2 patients N=600
Asymptomatic controls N=200
Population controls N=500

Output: Top hits

Genotyping of 1% top hits Validation cohort

Stage 2 patients N=400
Asymptomatic controls N=200
Population controls N=900

What we will deliver - science

Short-term

- New African genomes
- Biobank
- Epidemiological data

Medium-term

- HAT susceptibility loci/pathways
- Intervention strategies policy change?
- Biomarkers for disease severity
- Relevance of asymptomatics in GWAS

Long-term

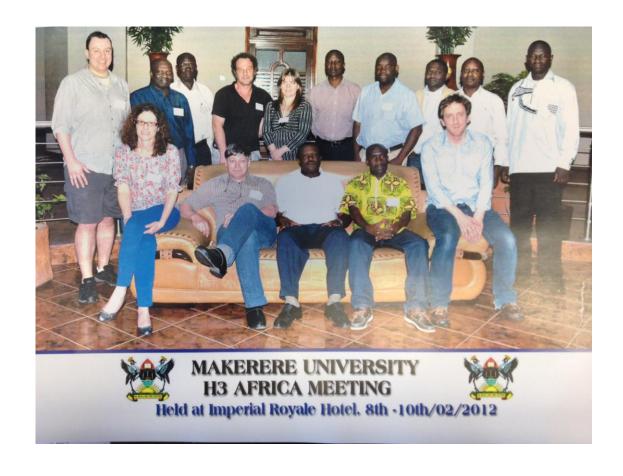
- New therapies
- New diagnostic tools

What we will deliver –capacity development

Short-term

- Biobanking facilities
- Computer infrastructure for storage and analysis of genomic data

Medium-term


- Panel of skilled African scientists in genomic analysis
- Bioinformaticians
- PhDs
- Masters
- Technicians

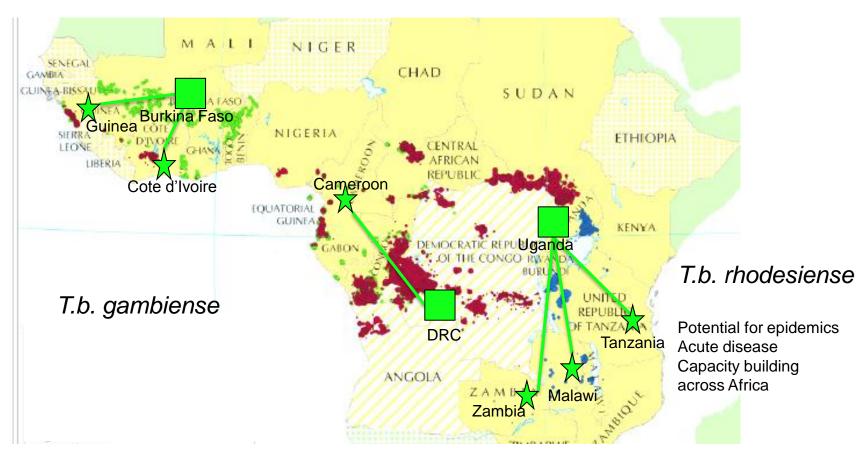
Long-term

- Self-sustaining research projects

Team - Who we are

Leading experts in different aspects of HAT

TrypanoGEN


Who we are

- 9 African + 3 European countries
- Experienced
- Existing infrastructure in hubs
- 4 institutes linked with AfriqueOne, SACIDS, SACORE, CARTA, THRiVE
- Already several successful collaborations between individual network members on various projects
- eg WT, Gates, EU, AU and PATTEC.

Where we are

Training/capacity building

Training provision:

- Workshops in sample collection and biobanking
- Workshops in genome analysis WT course in genome association studies
- Workshop on bioethics
- On the job training by hub-embedded bioinformatician
- Training on demand by external collaborators
- Scientific conferences/meetings

Capacity building:

- SOPs for diagnosis and sampling
- Biobanking
- Expand on existing computational infrastructure

Ethics

Informed consent

- Secured and anonymised data and samples
- Sample and data access committee

Benefit to patients

Short-term

- Good diagnosis and follow-up

Benefit to community

Short-term

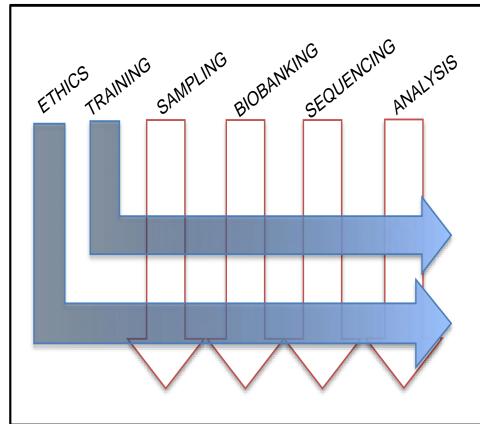
- Reduced transmission

Awareness of disease through public engagement activities

Long-term

- New diagnostic tools / therapies

- New policies / control strategies



Ethics- obtaining approval

- Research into ethical sensitivities in different countries (PhD)
- Ethics manager and expert ethicists in field of human genetics
- Ethical approval already obtained for Cote d'Ivoire cohorts

Ensuring delivery

ETHICS

Lead: S. MacLean

Deputy: P. Alibu, M. Parker

SAMPLING

Lead: M. Simuunza

Deputy: D. Mumba

SEQUENCING

Lead: G. Simo

Deputy: C. Hertz-Fowler

TRAINING

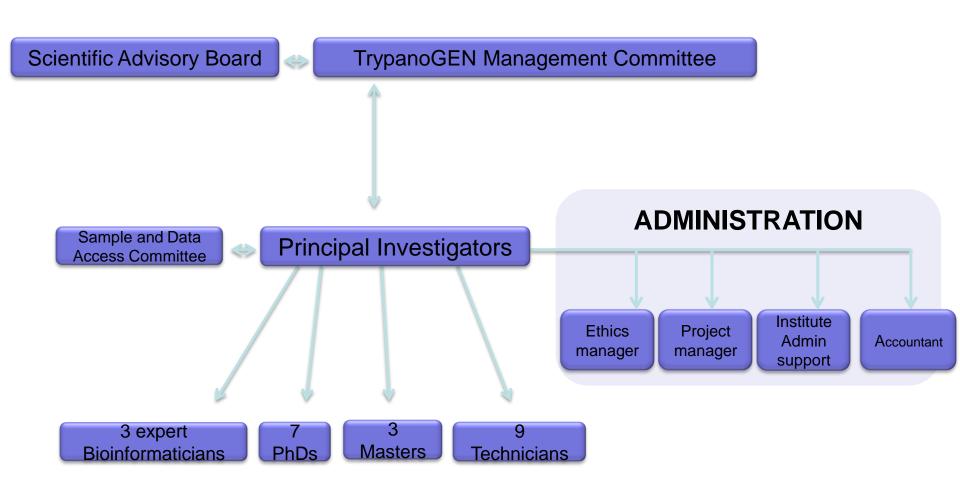
Lead: I. Sidibe

Deputy: D. Mumba

BIOBANK

Lead: D. Mumba

Deputy: E. Matovu, I. Sidibe


ANALYSIS

Lead: K. Mathurin

Deputy: E. Matovu

Ensuring delivery

Ensuring delivery

Evaluation procedures

- Kick-off meeting milestones and detailed plan agreed
- Monitoring progress regularly
 - -quarterly conference calls
 - -6 monthly reports
- Annual review process ISAB
- Project manager to facilitate smooth running of project
- Ethics manager to ensure ethical agreement is obtained
- Funds for field work released based on performance

Ensuring good communication

- Regular scientific and managerial meetings
- Forum for discussion and feedback of stakeholders

Sustainability

- Network PI members have permanent positions
- PhD students have skills in genome analysis to ensure employability and be in a position to lead or collaborate on future African genomic projects
- Ensure future funding through:
 - Funding opportunities workshop
 - Workshops and training in grant writing
 - Grant polishing team
- Links with other consortia through invitation to annual scientific meetings, joint training sessions

Areas of potential synergy with other H3 Africa networks

- Ethics
- Training -grantsmanship
 - -bioinformatics and GWAS
 - -ethics workshops
- Sharing data policies
- Shared controls

SNP database

potential problems – rural Africa

- Logistics
- Infrastructure building
- Communication across Africa