

Investigating gut microbiome diversity among children infected with schistosomiasis in the endemic region of Albert Nile, Pakwach district Caroline Jackline Musiime

## Introduction

- Schistosomiasis (bilharzia) is a NTD in sub-Saharan Africa caused by the schistosome species (blood flukes) mostly in 10-20 yr-olds
- >4m people estimated to be infected (73/112 Ugandan districts) &
  ~55% of the population at risk
- >290 million infections worldwide & ~280,000 annual deaths
- Intestinal helminth parasites live in proximity with gut bacteria
- The gut microbiome impact on the disease burden has not been extensively studied within Uganda
- High prevalence of schistosomiasis among the young age group shows the imperative to focus on infection control & disease prevention in affected communities
- By investigating the gut microbiome diversity effects on the health status of schistosomiasis co-infected individuals

# Sample Population

# Methodology



#### Conclusion

- Dysbiosis observed with different infection intensities
- The diversity indices offered a comprehensive understanding of the microbial species' richness and evenness in the samples
- Differential abundance analysis highlighted key bacterial genera involved in gut microbiome shifts in metabolic and immune functions due to infection status, therefore might have biological implications
- This data suggests that the gut microbiome might be an important variable in schistosomiasis disease progression in children

### Results









#### Acknowledgements

- Dr. Julius Mulindwa (PhD)
- Dr. Daudi Jjingo (PhD)
- Makerere Research Innovation Fund (MakRIF)
- African Center of Excellence in Bioinformatics &
  Data Intensive Science, Makerere University